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Abstract

Everyone agrees that the human visual system is able to
perform complex tasks apparently without the slightest
effort. The sharpness of sight of the human visual system is
closely linked to the number and the density of visual cells.
The greatest visual acuity is provided by the fovea which is
a small retinal area located in the axis of the human eye
pupil. Beyond this particular area, the acuity falls roughly in
inverse proportion to the visual angle.

A simulation of foveal mechanisms can be derived from
a space-variant image sampling. In that way, the main
problem to solve is to find out a relevant model for a retinal
cell description. The whole field of view is covered by
varying sized disks, in order to modelize the retinal cells.
The basic idea of our method is to modify the resolution of
the analysed image starting from a given point. This starting
point or focusing point corresponds to the center of a
focusing area, where the vision system focuses its ressources
to a detailed analysis.

Introduction

Computer vision systems are confronted with prodigious
amounts of visual information. To work in real time, a
computer vision system must analyze just that information
of interest to the current visual task. Such a selective
analysis of a scene is continually used in human vision. A
digital image captured by a camera or by almost all two-
dimensional analog-to-digital conversion devices conveys
information about depth, color, pattern, etc. Generally such
an image contains far more data than can be analyzed by a
computer vision system in real time. The idea of directing
computational resources to locations where they are mostly
required is obviously based on the behavior of living organ-
isms. While most current computer vision applications
work with a constant spatial resolution, biological systems
and more precisely visual systems of primates are based on a
space-variant architecture.1,2 Such an architecture allows the
visual system to focus its resources only on the information
of interest while the remaining information is analyzed with
a lower precision. We have access to visual data which
represent a field of view of approximately 200°. We possess
movable space-variant visual sensors (our eyes) which com-

bine a high-resolution central fovea with decreasing reso-
lution in the periphery. Thus high-resolution processing is
applied only where necessary. Since most data available in
an image is irrelevant to a given visual task, it seems then
useful to realize a selective filtering. This perspective implies a
remarkable reduction of data and computational resources.

Attention Mechanisms

The human visual system makes extensive use of multiple
resolutions. Visual acuity is greatest at the center of gaze
(the fovea) and it falls monotonically but rapidly with
increasing visual angle into peripheral vision. Another
characteristic of human foveated vision is that the visual
system gathers partial information about the surrounding
environment by moving the focus-of-attention and then
determining the next step for the specific task. To gather
detailed information about the visual world, a human
observer has to move his fovea. Foveal vision is then
generally said to be associated with visual attention while
the role of peripheral vision is to guide gaze movements.
Indeed, to deal with our environment, we must be able to
detect in the tremendous amount of visual in-formation the
most important elements for the current task to grant a
sufficient attention. The rapidity of detection of relevant
information is often crucial. It is for example the case when
driving a car. In such a context, a danger or an unexpected
event can appear anywhere. The observer does not know in
advance where to look in his environment.

There are clear advantages when using a space-variant
system. It can provide a compromise between two con-
flicting requirements: a wide field of view and a relatively
high resolution. Actually, the ratio of the sample points
needed for a sensor with space-variance (roughly equivalent
to the human retina) to the sample points needed for
providing uniformly high resolution is approximately 1:
1000-10,000. While a single image is clearly represented in
an « iconic » (though spatially transformed) manner on the
retina and in the primary visual cortex. The image of a scene
is mainly formed on the outside of the fovea since the fovea
corresponds to a small area of the retina (roughly 1°).
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The human monocular field of view is 208°.3 The spatial
sampling that covers relatively wide angles of view is not
well defined, since the visual system cannot be readily
described in terms of pixels. Foveal techniques seem
powerful in computer vision just as they are in human
vision. To simulate the resolving power of the human
visual system in the machine vision context, we define a
computational model of image sampling. This model
reproduces the two main retinal areas: a foveal area with
constant sampling rate and a peripheral area where the
sampling rate decreases roughly in function of the inverse of
the visual angle.

Foveal area

      R3

   R2

    R1

r2

     Integration set
    r3

Figure 1. Sampling scheme based on the resolving power of the
human visual system.

We are going to follow the sampling scheme of Figure
1 to describe these two retinal areas. From the focusing
point, center of the sampling rings and of the fovea, to the
fovea boundary, the resolution will be unchanged. Then,
outside the fovea, the resolution will be decreased as a linear
function of eccentricity. This can be achieved by determining
a sampling set made of centers of disks (integration sets).
These disks are assumed to be circular sensors of increasing
radii rl. This way of sampling enables to define a ring set.
Each ring includes the same number of disks with equal
radii. The disk radius increases according to the ring radius
(radial distance to the focusing point).

The sensors (that we also call integration sets) of our
sampling scheme are spatially distributed in a similar
fashion to Yamamoto, Yeshurun and Levine.3 Centers of
disks are uniformly spaced on each ring according to an
overlap factor vθ. The radius Rl of the lth ring depends also
on an overlap factor denoted by vr. This overlap factor
corresponds to the ratio of the diameter 2 rl of an integration
set to the radius Rl of the ring where its center is located.
The radius of the lth ring Rl can be expressed by

Rl = R0. 1 +
2vr 1 − vθ( )

2 − vr 1 − vθ( )
 

 
 

 

 
 

The radius of the integration set on the lth ring is

rl =
vr.Rl

2

Each integration set delimits some points of the initial
image under study. These points will be gathered to merge
the visual information and reduce the resolution in order to
obtain an encoded image. The overall result of this process
is a space-variant filtering.

Image Encoding by Radial Sampling

The encoding process enables to set up a way of gathering
information on each disk previously defined. The plane is
cut up into a finite number of equal angular sectors, whose
common summit is the focusing point. An increasing
sequence of radii is computed and, on each ring centered at
the focusing point, a disk per sector is considered, but the
sampling step for the sequence of radii is not constant.

Then the sampled image can be encoded as follows: on
the first line the values corresponding to the integration sets
of the first ring (whose radius R1 is the minimum of the
sequence) represent the average values of the sensor areas.
On the second line there are the values of second ring disk
centers and so on. This process enables to represent information
to be shown out. Though the density of the observed scene is
regular in both axis directions, it yields that this samp-ling
scheme gives an homogeneous radial density. The processed
image is then a developed image of the original one around
the focusing point. On the encoded image appears radial
information integrated on each part of the sectors. These
parts have the original feature of being equal-weighted
according to the distance to the focusing point. Figure 2
shows the initial image under study in the paper.

Point B

Point A

Figure 2. Original image and two different focusing points.

Radial Sampling
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Image Encoding by Average Integration
Gathering information by average integration means

computing the average value on each integration set. Then,
this value is associated with the disk center.

 a)

 b)

Figure 3. Encoded image by average sampling for a foveal radius
of a) R0 = 15 and b) R0 = 30 with A as focusing point.

 a)

 b)

Figure 4. Encoded image by average sampling for a foveal radius
of a) R0 = 15 and b) R0 = 30 with B as focusing point.

Figure 3 and 4 show the average values of integration
sets for two different foveal diameters and two different
focusing points. The formula giving the average value v(d)
on a disk d follows. Let v(M) be the value at a point M and
card(d) be the number of points belonging to d :

v(d) =
1

card(d)
v(M)

M∈d
∑

Image Encoding by Median Filtering Integration
In order to determine the value computed by median

filtering, let us consider the value set on each integration
set. Sorting these values by increasing or decreasing order
enables the extraction of the median value v(d), associated
with the disk d and given by the following formula. Let M i

be the sequence of points belonging to a disk d such as:
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 a)

 b)
Figure 5. Encoded image by median filtering sampling for a
foveal radius of a) R0=15 and b) R0=30 with A as focusing point.

Figure 5 and 6 show the encoded images from the
original one by median filtering integration. The results are
quite similar to the previous ones obtained by average
computation. In other words, a loss of information more or
less important can hardly be evaluated when comparing the
two methods. Let us see how the reconstruction process
works on these images.

 a)

 b)
Figure 6. Encoded image by median filtering sampling for a
foveal radius of a) R0 = 15 and b) R0 = 30 with B as focusing
point.

Image Reconstruction from an
Encoded Image

Previously, we have computed an encoded image corres-
ponding to a radial-sampled image of the original one. We
are now going to define the reverse process. In other words,
the main problem to solve is to determine a way to obtain a
square-sampled image from the radial-sampled image.
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Figure 7. Radial neighborhood of a point M belonging to a
given part of the plane (in gray). This part is defined by an
angle (angular sector of sampling) and a ring. A point M of the
gray region can belong to 1 to 4 disks.

According to the previous sampling, a point of the
square grid can belong to 1, 2, 3 or 4 circular cells (see
Figure 7). These few particular cells can be found comparing
the point coordinates with the respective covered areas.
Using complex coordinates is a good way to determine
which part of angular sector and which ring the point
belongs to, because the modulus of the point gives
immediately the ring and its argument the angular sector (see
Figure 8).

      M

r

 α
  F

Figure 8. Position of a point M according to its complex
coordinate z. The part of the angular sector to which a point M
belongs is given by its modulus r (giving the ring) and its
argument a with z = eia.

It is then easy to find out which of the four disks
determining the radial neighborhood may contain the point
under study. As a point of the radial-sampled image
corresponds to a full disk of the square-sampled image and
vice versa, it is easy to find the gray-level values necessary
for the reconstruction. They make out a square neighborhood
on the encoded image, as shown in Figure 9.

θ

l

Figure 9. Location of the four considered disks in Figure 7 on
the encoded image.

Then, the value of the point on the grid will be
computed from the values associated with the previously
selected cells. The way of computing this value depends on
the sampling method used for the encoding step.
Reconstruction from an Encoded Image by
Average Sampling

The reverse process for the average sampling is an
average reconstruction. In other words, the value v
corresponding to the point M on the grid (reconstructed
image) is computed as the average value of those on the
selected cells. Let D be the set of disks containing M and
v(d) the value on disk d.

v
1

card(D)
v(d)

d D

=
∈
∑

 a)

 b)
Figure 10. Reconstructed images from encoded images of Fig. 3.

Figure 10 and 11 show the reconstructed images with a
foveal radius of a) 15 and b) 30. We can notice that some
artifacts due to the sampling disks clearly appear on these
images. But global information is represented because the
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spiral can be well located though it is less luminous as it
was in the original image.

When considering point A as the focusing point, the
spiral can be easily located as it is close enough to the
foveal area. But information is weakened enough not to
prevent the star at the focusing point from being brighter
and more accurately represented in the reconstructed image.

In the following images (Figure 11) with B as focusing
point, the spiral can hardly be distinguished. That enables to
point out local information all around the star under study,
giving less importance to points too far from the focusing
point.

 a)

 b)
Figure 11. Reconstructed images from encoded images of Fig. 4.

Reconstruction From an Encoded Image by Median
Filtering Sampling

The reverse process for the median filtering sampling is
a median filtering reconstruction. In other words, the value v
corresponding to the point M on the reconstructed images is
computed as the median value out of those of the selected
disks.

Let D be the set of disks di containing M and v(di) the
value on disk di. The disk values v(di) are sorted in an
increasing sequence and:

d1,..., di,...,dcard(D)∈D

v(d1) ≤ ... ≤ v (di) ≤ ... ≤ v(dcard(D))

v = v d card(D)
2

 
 

 
 

 a)

 b)
Figure 12. Reconstructed images from encoded images of Fig. 5.

Figure 12 and 13 show the reconstructed images with a
foveal radius of a) 15 and b) 30.

The conclusion concerning this new set of images
obtained from the median filtering process is quite the same
as for the average process, though these last images appear
noisier than the previous ones.
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 a)

 b)
Figure 13. Reconstructed images from encoded images of Fig. 6.

Conclusion

Comparing the previous methods for a given radius of the
fovea shows that on the resulting images, some circular
shapes are visible for the average method, though it is
noisier for the median filtering process. They reproduce the
circular cells used for radial sampling. This space-variant
filtering method is a good way to gather information all over
an image, apart from in the foveal area, according to the
radial distance to the focusing point.

While visual attention is a major research topic in
psychology, neurobiology,4 and the computational aspects
of vision, most of the work in this area relates to covert
attention. This term refers to a situation where the gaze is
fixed on a single image and the focus of attention moves
covertly within that image. This way, all the interesting
spots can be studied separately without any interference.
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